Термодинаканың үш заңы мен энтропия ұғымының физикалық мәндерін талдаңыз.



Термодинамика - физика ғылымындағы жылудың жұмыс және басқа энергия түрлерімен арадағы қарым-қатынасын зерттейтін тармағы. Термодинамиканың бірінші бастамасы — термодинамикалық жүйелер үшін энергияның сақталу заңы; бұл заң бойынша жүйеге берілетін жылу оның ішкі энергиясын өзгертуге және жүйенің сыртқы күштерге қарсы жұмысына жұмсалады. Дене күйінің барлық энергиясы - микроскопиялық қозғалысының толық түріндегі сыртқы кинетикалық энергиясы Ек және салмақ күші өрісі, электрлі немесе магнит өрісі жағдайындағы потенциалды энергия Еn, сонымен қатар, дене бөлшектерінің құрамдық әрекеттері мен қозғалу энергиясын жасаушы ішкі энергия U қосындыларынан тұрады:

Қаралып отырған жылу динамикалық жүйе шамаланса, онда дененің орталық салмақтық алмасу жылдамдығы өте аз (С=0), яғни қозғалыссыз жұмыстық дене көлемінің өзгеруі туралы сөз болады, сондықтан Ек=0. Айталық, Ер=0 сонымен, бұл жерде толық энергия ішкімен бірдей (E=U), ал жүйе энергиясының өзгеруі - жұмыстық дененің, ішкі энергиясының өзгеруіне келтіреді.
Жылу динамикасының бірінші заңына сәйкес, жұмыстық дененің энергиясы кезінде, қабылданған жағдайға тиісті кезіндегі жүйенің өтуі 1 бастапқы күйінен 2 соңғы мәндеріне артуы, денеге берілген жылулық dQ және мәніне келуі dL істелінген жүйе жұмысына тең: dU=dQ-dL немесе әдетте былай жазу қабылданған -

Сыртқы ортамен әрекеттестігі жоқ болғандағы кезінде (dQ=0 және dL=0), формуладағы dU=0, яғни жүйе энергиясы өзгеріссіз сақталады. Жүйелер қатнасының жекеленген жылулығы үшін, ондағы dQ=0 екені белгілі.

Теңдеу жұмыстық дененің еркінше алынған санды массасы m арналып жазылған, ал меншікті мәндері үшін былай жазылады:

мұндағы q - меншікті жылулық саны; l - меншікті жұмыс; u - меншікті ішкі энергия, q, u, l бірлік өлшемі Дж/кг.

Бұл теңдеу, жылудинамикасының бірінші заңының талдаушы тұжырымдалуын көрсетеді, осыған сәйкес жүйеге жеткізілген жылу, жүйелердің ішкі энергиясына жұмсалады және жұмыстың атқарылуына қарсы денеге түскен сыртқы күш. Олар, қайтымдыға да және сыртқы қайтымсыз процесстер үшін де әділетті. Себебі, қабылданған жағдайдағы жылу алмасуы кезінде, дене мен орта арасының соңғы температура айырмашылығы кезінде, қайтымсыз жылуалмасуына сәйкес келеді.

Термодинамиканың екінші бастамасы) — статистикалық нысандардың (мысалы, атомбеидардың, молекулалардың) үлкен санынан тұратын жүйелердің өз бетінше ықтималдығы аздау күйден ықтималдығы молырақ күйге ауысу процесін сипаттайтын табиғаттың түбегейлі заңы. Термодинамиканың үшінші бастамасы — абсолюттік нөлге жуық температура маңында, реакцияның жылу эффектісі мен максимал жұмыстысипаттайтын қисық сызықтар өзара бірігіп кетеді, ал олардың ортақ жанамасы температуа осіне параллель болады дейтін, химиялық реакцияларға тән эксперименттік нәтижелерді қорытындылаудан туатын постулат.

Энтропия- тұйық термодинамикалық жүйедегі өздігінен жүретін процестің өту бағытын сипаттайтын күй функциясы.Энтропияның күй функциясы екендігі термодинамиканың екінші заңында тұжырымдалады.Энтропия-күй функциясы,термодинамикалық тепе-теңдік күйдегі макроскоптық денелерге тән қасиет.Халықаралық жүйеде дж/К арқылы өрнектеледі.Энтропия ұғымы ғылымның көптеген салаларында(физика,химия,т.б.) маңызды рөл атқарады.Энтропия түсінігін алғаш енгізген Клаузиус. Оның физикалық мәнін қарастыру үшін изотермиялық процесс кезіндегі жылу мөлшерінің Q жылу беруші дененің температурасына Т қатынасын қарастырады, бұл қатынасты келтірілген жылу мөлшері деп атайды. Кез-келген қайтымды процесс кезінде денеге берілетін келтірілген жылу мөлшері нольге тең. Термодинамикада қайтымды процесс үшін: Δ S = 0, ал қайтымсыз процесс үшін өседі: Δ S > 0. Бұл өрнектерді біріктіріп, Клаузиус теңсіздігін алуға болады: Δ S ≥ 0.

Жүйенің энергиясы нақты бір мəнге ие болмайтындықтан энтропия канондық үлестірудің орта мəні негізінде есептеледі Сонда энтропияны мынадай өрнекпен есептеуге болады: S = k l nW(U, l). U - термодинамикалық ішкі энергия, U = E. Энтропия жүйенің термодинамикалык күйінің функциясы екендігін көрсетеді.

Статистикалық анықтама бойынша энтропия тепе-теңдік күйде максимум мəнге ие болады, яғни кез келген тепе-теңдікте емес күйлердің энтропиясы тепе-теңдік жағдайдан кем болады. Бірақ тепе-теңдікте емес түйықталған жүйе жылулық қозғалыстардың салдарынан тепе-теңдік күйге келетіндіктен тепе-теңдікте емес жүйелердің энтропиясы ұлғаяды. Бұл тұжырым энтропияның өсу заңы деп аталады. Энтропияның жүйенің күйін сипаттайтын параметр ретіндегі мағынасының өзі ол жүйенің «тепе-теңдікте еместігінің» дəрежесін сипаттайтындығында. Статистикалық теорияда энтропияның өсу заңының статистикалык мағынасы көрнекі түрде түсіндіріледі: ішкі өзгерістердің нəтижесінде жүйе ықтималдығы үлкен күйлерге ұмтылады, яғни саны көп микрокүйлер ғана нактыланады. Ал тепе-теңдік күйден жүйе өздігінен шықпайды, себебі бұл жүйеге термодинамикалык ықтималдықтың үлкен мəні сəйкес келеді. Түйықталған жүйедегі үрдістердің жүру бағыты мынадай қатынаспен сипатталады: dS≥0

Тұйықталған жүйенің тепе-теңдік күйге өтуін қарастырайық. Тепе-тендік қалып жүйенің негізгі қасиеттерінің теңескендігін көрсетеді. Барлық өлшемдердің орта мəндерінің орнығуы, біртекті мəнге келуі үрдістің сыртқы əсерсіз, өздігінен жүру себебінен болады. Бұл жағдайда энтропия артатын болғандықтан жүйе тепе-теңдік қалыпқа ұмтылғанда жүретін үрдістер қайтымсыз болады. Қайтымсыз үрдісті еш уакытта бастапқы қалпына кері əкелуге болмайды деп деп түсіну қате. Егер жүйе А күйінен В күйге өтсе, сыртқы əсерлерді пайдаланып оны В күйінен кері А күйіне қайтаруға болады, бұл жағдайда жүйе АВ үрдісіне қарсы бағытта өтеді. Қайтымсыздық деп тіке

жəне кері үрдістерде қоршаған денелерде кейбір кейбір өзгерістердің қалуын айтады.

Нақты үрдістер қайтымсыз болады. Бірақ моделдік жобалауда, кейбір механикалық, электромагниттік құбылыстарды, үйкелісті, ортаның тұтқырлығын, тоқ жүргендегі жылудың бөлінуін т.б. ескермесе, қайтымды деп қарастыра аламыз. Осы сияқты термодинамикадағы тепе-теңдіктегі үрдістер де, тұйықталған жүйеде энтропия өспейтін болғандыктан (dS = 0), қайтымды үрдістерге жатады. Шындығында да, белгілі бір дененің күйі басқа объектімен əсерлескенде, əрбір уақыт мезетінде, сыртқы параметрлер жəне температура арқылы анықталады.

Энтропия хаосқа ену шамасын анықтауда, әсіресе қоғамдық және жеке тарапта, қолданылады. Энтропия шығармашылықтың қарама-қайшылығы болып табылады. Энтропияның жоғарылауы немесе төмендеуі мағынаны жоғалтып ұқсастықты жоғарылатады. Қоғамдық жаппай күйреу және оның ізімен өркениеттен нақты бағытталған тіршілік етуге ұмтылыс дәл осы мағынадағы энтропияның жоғарылауының айқын мысалы болып табылады.

14) Электродинамикадағы эфир мәселесіне көзқарас.

Күш сызықтарының айқындылығын дамыта отырып, Максвелл сұйықтық, газ немесе қатты дененің аналогі болып табылатын электромагниттік өріс тіршілік ететін ортаны елестетті. Максвелл керемет математикалық дайындық пен фарадей типіндегі физикалық ассоциацияларды иеленді. Интуитивтік ойлары Максвеллді электромагниттік өзара әрекеттесуді өткізетін ортаны іздеуге итермеледі, ол осы ортаға ұқсас, бірақ өзіндік нақты құрамы бар «эфирді» синтездеуге тырысты. Мұндай ортаның деформациялануын әртүрлі мүмкіндіктерін ескере отырып, ол жаңа реологияларды ойлап тапты. Шын мәнісінде, ол аталмыш «эфир» немесе «күш сызықтарын» да тапқан жоқ. Алайда, Максвелл тұсындағы бірыңғай орталардың механикасы оның тұжырымдамасын теріске шығартпады. Бұл механиканың тілі болып жеке көбейткіштердің және математикалық аппарат векторының анализі дифференциалды теңдеуі болып саналды. Оның өзі орта сипаттамаларының жоқтығы мен көрінбеуіне қарамастан жақыннан әсер етудің болмысын қамтамасыз етті. Максвелл физикалық интуициясын негізге ала отырып, бұл аппаратты Фарадей тәсілдерінің абстракциялаушылығымен байланыстырып, электромагниттік процестерді сипаттайтын мына теңдікке қол жеткізді.. Максвелл «эфирі» моделі абсолютті аксиоматикалық ақиқат болып табылады. Ол теріске шығарылуы мүмкін емес.

Бос орталық ушын Максвелл-Герц теңдеулерінің түрлендіруі.

Магнит өрісінде қозғалғанда пайда болатын электр қозғаушы күштердің табиғаты.

Егер Максвелл-Герц теңдеулерін K тыныштықта тұрған жүйедегі бос орталық үшын дұрыс болса, мұндай жағдайда біз мынаған ие боламыз:

Бұл жағдайда (X,Y,Z) шамалары электр өрісініңкернеулік векторлары, (L, М, N) арқалы магнит өрісінің кернеулік векторы белгіленсін.

Бұдан алатынымыз: салыстырмалық принцип K жүйесінде дұрыс болған болса, аталмыш жазылған

Максвелл-Герц теңдеулерінің k жүйесінде да дурыс болуын талап етеді.Екі жүйе де Максвелл-Герц теңдеулеріне эквивалент.Мұның нәтижесінде y(v)y(- v) =1 мынадай өрнекті аламыз.

15) Электромагниттік өрістің дуалистік табиғаты мен жарық кванты ұғымын талдау.

Электромагниттік өрістің қасиеттерін зерттеу үстінде Максвелл мынадай сауалға жауап іздеді: егер айнымалы магнит өрісі электр өрісін тудыратын болса, табиғатта кері процесс болар ма екен? Өз кезегінде айнымалы электр өрісі магнит өрісін тудырмас па екен? Табиғаттың біртұтастығына, табиғат заңдарының ішкі құрылымының үйлесімділігіне кәміл сенгендіктен туған бұл ой Максвелл гипотезасының негізгі арқауы болып табылады.

Электр өрісінің өзгерісі кезінде магнит өрісінің пайда болуы. Максвелл мұндай протцесс табиғатта шынында да өтеді деп есептеді. Электр өрісі бойынша өзгеретін барлық жағдайда магнит өрісі пайда болады. Бұл электр өрісінің кернеулік сызықтары айнымалы магнит өрісінің индукция сызықтарын қамтып алатыны секілді, өрістің магнит индукциясының сызықтары электр өрісінің кернеулік сызықтарын қамтып алады. Бірақ мұнда электр өрісінің кернеулігі артқан кезде пайда болатын магнит өрісінің В индукция векторы Е векторының бағытымен оң бұранда түзеді.

Электр өрісінің кернеулігі кеміген кезде магнит индукциясының В векторы бағыты Е векторы бағытымен сол бұранда түзіледі.

Максвеллдің гипотезасы бойынша магнит өрісін, мысалы, конденсаторды заряттағанда кілтті қосқаннан кейін тек өткізгіштегі тоқ ғана емес, сонымен қатар конденсатордың астарлары арасындағы кеңістікте болатын айнымалы электр өрісі де тудырады. Әрі айнымалы электр өрісі, астарлардың арасында дәлме-дәл өткізгіштегідей электр тоғы болатын кездегідей магнит өрісін тудырады. Максвеллдің гипотезасы тәжірбиеде электромагниттік толқындардың табылуы арқылы дәлелденеді. Электромагниттік толқындар тек айнымалы магнит өрісі айнымалы магнит өрісінің тудыруының арқасында ғана пайда болады.

Электромагниттік өріс. Өзгермелі электр және магнит өрістерінің арасындағы байланыс ашылғаннан кейін бұл өрістердің жеке күйінде бір біріне тәуелсіз өмір сүре алмайтыны айқындалды.

Кеңістікте айнымалы магнит өрісі жеке өзі емес электр өрісімен қатар пайда болады. Және керісінше айнымалы электр өрісі магнит өрісінсіз пайда бола алмайды.

Тағы бір маңызды мәселе, электр өрісі магнит өрісінсіз немесе магнит өрісі электр өрісінсіз тек белгілі санақ жүйесінде қатысты ғана бола алады. Мәселен, тыныштықтағы заряд тек электр өрісін ғана тудырады. Бірақ заряд тек белгілі санақ жүйесіне қатысты ғана тыныштықта болатыны белгілі. Басқа санақ жүйелеріне қатысты ол қозғалыста бола алады, демек, магнит өрісін тудыра алады.

Дәл осындай магнитпен байланыс қан санақ жүйесіне тек магнит өрісін ғана байқаған болар едік. Бірақ магнитке қатысты қозғалыстағы бақылаушы электр өрісін де аңғарады. Себебі, магнитпен салыстырғанда қозғалыстағы санақ жүйесіндегі магнит өрісі бақылаушы оған жақындаған сайын немесе одан алыстаған сайын уақыт бойынша өзгертеді. Уақыт бойынша айнымалы магит өрісі құйынды электр өрісін тудырады.

Демек, егер осы өзгерістердің қай санақ жүйесіне қатысты қарастырылып отырғаны көрсетілмесе, кеңістікте берілген нүктесінде тек қана электр немесе тек қана магнит өрісі бар деген ұйымдарда ешқандай мағына жоқ. Магнитке қарасты тыныштық күйде тұрған санақ жүйесінде электр өрісінің болмауы жалпы электр өрісі жоқ дегенді білдірмейді. Магнитке қатысты қозғалыста болатын кез келген санақ жүйесінде бұл өрісті байқауға болады.

Электр және магнит өрістері біртұтас электромагниттік өрістердің білінуі болып табылады. Электромагниттік өріс зарядталған бөлшектердің арасындағы әрекеттесулерді іске асыратын материяның ерекше түрі. Ол шын бар, яғни бізге тәуелсіз, біздің ол жайлы білімімізге тәуелсіз өмір сүреді. Бірақ элоктромагниттік процестерді қай санақ жүйесінде қарастырып отырғанымызға байланысты біртұтас электромагниттік өрістің осы не басқа қыры көрінеді. Барлық инерциялық санақ жүйелері өзара тең құқықты. Сондықтан электромагниттік өрістің байқалатын көріністердің бірде-біреуінің артықшылығы болмайды.

Максвеллдің гипотезасы бойынша айнымалы электр өрісі магнит өрісін тудырады. Электромагниттік өріс біртұтас санақ жүйесіне тәуелді түрде өрістің бірде-бір, бірде екінші қасиеттері білінеді.

Электр зарядтары айналмалы қозғалғанда, яғни кез - келген айнымалы токта электр өрісі де, магнит өрісі де уақыт ағымына қарай өзгеріп отырады. Сонымен қатар, бұл өрістер, Максвеллдің 1865 жылғы теориялық пайымдауынша, өздерін біртұтас электормагниттік өріc түрінде көрсетеді.

16) Кванттық механика мен статистикалық механиканың негізгі концепцияларына сипаттама беріңіз.

Кванттық механика, толқындық механика бұл микробөлшектердің (элементар бөлшектердің, атомдардың, молекулалардың, атом ядроларының) және олардың жүйелерінің (мысалы, кристаллдардың) қозғалу заңдылықтарын анықтайтын, сондай-ақ, бөлшектер мен жүйелерді сипаттайтын физикалық шамаларды макроскопиялық тәжірибеде тікелей өлшен

етін шамалармен байланыстыратын теория.

Ол өрістің кванттық теориясында, кванттық химияда, кванттық статистикада, т.б. қолданылады. Кванттық механика бейрелятивистік (жарық жылдамдығымен салыстырғанда төмен жылдамдықтағы с) және релятивистік (жарық жылдамдығымен салыстыруға болатын жоғары жылдамдықтағы с) болып бөлінеді.

Бейрелятивистік кванттық механика (өзінің қолданылу аймағындағы Ньютон механикасы сияқты) – толық аяқталған, қайшылықтары жоқ, өз саласында кез келген есептерді шешуге мүмкіндігі бар теория. Керісінше, релятивистік кванттық механиканы мұндай теория қатарына жатқызуға болмайды. Классикалық механика кванттық механиканың жуықталған дербес түрі болып саналады.

Кванттық механиканың негізнің концепцияларын түсіндіру үшін, ең алдымен, оның негізгі ұғымдарына тоқталайық.

Кванттық механиканың тағы бір ережесі ретінде, мына сөйлемді алуға болады:

«Кванттық механика-теориялық механиканың іс-әрекеттердің Планк тұрақтысымен слыстыруға келетін физикалық құбылыстарды сипаттайтын бөлімі». Яғни негізгі ұғым ретінде алдымен Планк тұрақтысына тоқталу қажет. Планк тұрақтысы — әсерлерінің сипаты үздікті болатын көптеген физикалық құбылыстарды анықтайтын түбегейлі физикалық тұрақты. Планк тұрақтысы таңбасыменбелгіленеді. Бұл әмбебап тұрақтыны 1900 ж абсолюттық қара дененің сәуле шығару спектріндегі энергияның таралу заңдылықтарын зерттеу кезінде неміс физигі М.Планк енгізген. Оның ең дәлірек мәні Джозефсон эффектісі арқылы анықталған. і=(6,6261960,000050)*10-34 дәрежесі Дж*с.

Келесі термин Гейзенбергтің белгісіздік принципі болмақ. Белгісіздік приципі мәні- элементар бөлшектердің орналасуын анықтаудың мүмкін еместігі болып табылады. Макроәлемде дененің орналасуы мен жылдамдығын анықтау барысында біз оған әсер етпейміз, яғни біз дененің жылдамдығы мен коррдтнаталарын нөлдік белгісіздік нақтылығымен анықтай аламыз. Ал кванттық құбылыстар әлемінде кез келген өлшеу процесі жүйеге әсер етеді. Бөлшектің орналасуын өлшеу фактісінің өзі оның жылдамдығының болжанбайтын өзгерісіне әкеп соғады.

Статистикалық механика - ықтималдық теориясы әдісімен бөлшектердің шектік мәні іс-әрекетін зерттейтін статистикалық физика бөлімі. Оны ғылымға Макс Борн 1955 жылы енгізген болатын. Өріс жүйесінің статистикалық динамикасы статистикалық механика шегінен асып, статистикалық өрістер теориясына жатады. Яғни, қарап отырсақ, статистикалық физиканың екі түрі белгілі болып отыр: статистикалық механика және өрістердің статистикалық теориясы. Статистикалық механиканы әдетте тепе-теңдік және теңсіздік деген екі тармаққа бөліп қарастырады. Тепе-теңдік статистикалық механиканың жүйелі құрылысы 1902 жылы Дж. Гиббс арқасында жүзеге асты. Ал теңсіздік статисткалық механика негізін 1946 жылы Боголюбов Н.Н. қалаған болатын.

17)Кеңістік пен уақыт, материя туралы Эйнштейн ілімі нің физикалық мәндерін талдаңыз.

Эйнштейн кеңiстiк, уақыт және материя туралы түсiнiктi түбегейлi түрде өзгертiп салыстырмалылықтың арнайы және жалпы теориясын құрды.

Жалпы, салыстырмалылық теориясы бұл кез келген дененің төрт өлшемді уақыт континуумында орналасуы болып табылады. Бұл дегеніміз х,у, z координаталарынан басқа «уақыт» өлшемнің енгізілуі болып табылады.

Х Яғни бәрімізге белгілі мына декарттық

Жүйе енді тағы бір өлшеммен толықтырылды

 

 

у

 

 

z

 

 


Салыстырмалылықтың жалпы және арнайы теорияларына жеке-жеке тоқталар болсақ.

Жалпы салыстырмалылық теориясында кеңістік- уақыт қатынастарының материалдық процестерге қатысының жаңа жақтары ашылды. Жалпы салыстырмалылық теориясы инерциялық және гра-витациялық массалардың эквиваленттік принципінен шығады. Атап айтқанда, массалардың эквиваленттік принципінің негізінде салыстырмалылық принципі қалыптасты, ол жалпы салыстырмалылық теориясында табиғат заңдарының инварианттылығын бекітті.

Салыстырмалылық теориясы кеңістіктің ауырлық күшінің әсерінен майысатындығын және уақыт барысының күшті гравитациялық өрістерде баяулайтыкын анықтады.

Жалпы салыстырмалылық теориясының фантастикалық болжамдарының бірі - өте күшті тартылыс өрісінде уақыттың толық тоқтайтындығы туралы. Тартылыс күші артқан сайын уақыттың баяулауы да күшейе түседі. Уақыттың баяулауы жарықтың гравитациялық қызыл орын ауыстыруы арқылы байқалады да, толқындар үзындығы артқан сайын оның жиілігі азая береді. Белгілі бір жағдайда толқын үзындығы шексіздікке, ал жиілігі нөлге ұмтылады.Салыстырмалылық теориясы уақыт пен кеңістіктің бірлігін көрсетті, кеңістік-уақыттық төртөлшемдік контимуум туралы түсінік қалыптасты.Салыстырмалылық теориясы масса мен энергияны e=mc2 қатынасымен байланыстырды, мұнда С - жарық жылдамдығы.Салыстырмалылық теориясында екі заң - зат массасының және энергиясының сақталуы заңдары бірігіп, энергия және зат массасының сақталуы деген бір заңға айналды.

Ал арнайы салыстырмалылық теориясы бұл- вакуумда жарық жылдамдығынан аз, соның ішінде жарық жылдамдығына жақын жағдайдағы қозғалысты, механика заңдарын, кеңістіктік-уақыт қатынасындағы әртүрлі қозғалыс жылдамдықтарын сипаттайтын теория. Арнайы салыстырмалық теория шеңберінде Ньютонның классикалық механика теориясы төмен жылдамдықтардың жақындасуы болып табылады. Гравитациялық өрістегі арнайы теорияның жалпылануы жалпы салыстырмалық теориясы деп аталады. Арнайы салыстырмалық теориямен сипатталатын физикалық процестердің классикалық механика болжамдарынан ауытқуы релятивистік эффекті деген атауға ие, ал мұндай эффектілер жүзеге асатын жылдамдықтар релятивтік жылдамдық деп аталады. Арнайы салыстырмалық теориясының классикалық механикадан негізгі айырмашылығы кеңістіктік және уақыт сипаттамаларының жылдамдыққа тәуелдәлігі болып табылады. Өзiнiң теориясына Эйнштейн 2 постулатты енгiздi: Галилейдiң салыстырмалы механикалық принципiнiң жалпыламасы болатын салыстырмалылықтың арнайы принципi және вакуумдегi жарық жылдамдығының тұрақтылық принципi. Сол теориясының негiзiнде 1905 ж. масса мен энергияның байланыс заңын ашты. Эйнштейн кванттық теорияны құруға да маңызды роль атқарды. Егер 1900 ж. Макс Планк материалды осциллятордың энергиясын ғана кванттаса, ал Эйнштейн 1905 ж. жарықтық сәуле шығаруды, жарық квантының немесе фотондардың ағыны деп қарастырып, кванттық, дискреттiк құрылымын зерттедi. Жарықтың кванттық теориясының негiзiнде фотоэффект құбылысын түсiндiрдi.Аталмыш кеңістік пен уақыт, материя туралы Эйнштейн ілімді қарастыру барысында, алдымен бұл ілімде қолданылатын негізгі термин Лоренц өзгерісіне тоқталайық. Лоренц өзгерісі(преобразование) бұл псевдоэвклидтік кеңістіктегі өз ұзындығын, немесе соған эквивалентті вектордың скалярлық көбейтіндісін сақтайтын вектордың сызықтық өзгерісі болып табылады. Лоренц өзгерісі физикада, әсіресе арнайы салыстырмалық теорияда кең қолданысқа ие, себебі АСТ-да аффинналық псевдоклидтік кеңістік орнында төрт өлшемді кеңістіктік-уақыт континуумы орын алған.

18) Астрофизикалық және космологиялық концепциялар ды талдау.

Бүкіл әлем туралы, оның қайдан, қалайша пайда болғандығы туралы мәселелер ежелден бері адамзатты толғандырып келе жатқан мәселелер болып табылады.

Діни көзқарастық ағымдар бұл мәселерді әр алуан мағынада түсіндірді.

Ғылым пайда болғаннан кейін Әлем туралы мифтік және діни көзқарастар біртіндеп өзгере бастады. Бұл арада әлем туралы анықтаманы бере кеткен жөн. Әлем дегеніміз - адамзат эмпирикалық бақылау жасай алатын, адамзат мекендеген кеңістік.

Әлемді космология ғылымы зерттейді. Космология ғылымның қорытындылары әлемнің жаратылысы мен дамуының жобалары деп аталады. Ал, космос деп Жер атмосферасынан тыс орналасқан кеңістікті атайды. Ежелгі Грецияда бул термин «тәртіп», «гармония» деген мағынада қолданылды. Сонымен космология әлемнің реттілік жүйесін, оның өмір сүру заңдылықтарын қарастырады.

Космологиялық зерттеулер бірнеше алғышарттарға негізделеді. Біріншіден, дүниенің физика ғылымы қалыптастырған әмбебап заңдары барлық Әлем үшін негізгі заңдар болып табылады. Екіншіден, астрономдар жүргізген барлық бақылаулардың бүкіл Әлемге қатысы бар. Үшіншіден, нақты ақиқат ретінде бақылау жүргізуші адамзаттың өмір сүру мүмкіндігіне шек келтірмейтін қорытындылар саналады.

Космологияның жасаған қорытындылары сонымен әлем дамуының және пайда болуының жобалары болып саналады.

Барлық заңдар мен ғылыми теориялар жобалар болып саналады, өйткені ғылымның даму процесінде олар басқа концепциялармен ауыстырылуы мүмкін.

Космологияда біртекті изотропты күйдегі кеңейе беретін Әлемнің жобасы цабылданған, ол 1916 жылы Альберт Эйнштейн жасаған салыстырмалылық теориясы мен тартылыстың релятивистік теориясына негізделеді.

Ғаламщар немесе космосты қазіргі ғылым өзара байланысқан, даму үстіндегі аспан денелерінің жүйесі ретінде қарастырады. Ғаламшар жұлдыздар маңында орналасқан планеталар жүйесін, жұлдыздар мен жұлдыздар жүйесі - галактиканы, галактикалық жүйесі – метагалактикан құрайды.

Ғаламшардағы материя топтасқан космостық денелер қозғалысьін береді, Аралас материя жеқелеген атомдар мен молекулалардан және орасан зор шаңдық бұлттар мен газды-шаңдық тұмандардан тұрады.

Күн жүйесінің пайда болуы туралы теорияларды усынушылар - неміс философы И.Кант және француз математигі П.С.Лаплас. Олар-дың біріккен теорияларын Кант. Лаплас гипотезасы деп атады.

И.Канттың болжамы бойынша, Күн жүйесі мәңгілік емір сүріп келе жатқан жүйе емес. Уақыт бойында тумандықтардың тартылыс күшінің әсерінен жеке аспан денелері пайда болады және олар бір жазықтың бойымен қозғала бастайды және олардың серіктері пайда болды.

Одан 50 жылдай уақыттан кейін П.С.Лаплас ез гипотезасын ұсынды. Лапластың космогониялық гипотезасы бойынша, Күн жүйесі айнала қозғалып тұрған газды түмандықтардан пайда болды.

Күн жүйесінің пайда болуы туралы келесі көзқарастар тобы ағылшын астрофизигі Дж.Х.Джинстің гипотезасынан басталды. Оның болжамы бойынша Күн басқа бір жулдызбен соқтығысқаннан кейін бөлінген газ ағындарынан ғаламшарлар пайда болды. Бірақ, жулдыздар арасындағы орасан үлкен қашықтықты есепке алсақ мундай соқтығысу мүлдем мүмкін емес сияқты. Джинс теориясы бойынша Күн жүйесі өз қурылым заңдылықтарына бағынатыны белгілі бір реттелген жүйе деп қарастырылмайды.

Күн жүйесі пайда болуы туралы қазіргі кездің концепциялары тек цана механикалық емес, электромагниттік күштерді де есепке алуды қажет етеді. Мұндай идеяны ұсынушылар швед астрофизигі Х.Альфвен мен ағылшын астрофизигі Ф.Хойл. Күн жүйесі пайда болуында электромагниттік күштер ерекше рөл атқарғандығы шындыққа жанасымды.

Күн мен ғаламшарлар пайда болған газды булттар электромаг-ниттік күштерге бағынатын иондалған газдардан қуралды. Орасан үлкен газды булттың жинақталуынан Күн пайда болғаннан кейін, одан қалған газдың қалдықтарынан гравитациялық күштің әсерінен ғаламшарлар пайда болды. Оларды магниттік күштің әсерімен Күн әрқилы қашықтықта устап турады. Ең үлкен ғаламшарлар пайда болғаннан кейін осы процесс кішілеу масштабта қайталанады, яғни олар пайда болған газ қалдықтарынан олардың серіктері пайда болды.

Күн жүйесінің пайда болуы туралы теориялар гипотезалар деңгейінде ғана, олардың шындыққа жақындығын бір жақты қарастыруға болмайды. Әлі де қайшылықты және түсініксіз жағдайлар көп.

Классикалық ғылымда ғаламшардың стационарлық күй теориясы қарастырылған, яғни ғаламшар бурын қандай күйде болса, қазір де сол күйде деп есептеледі.

Классикалық Ньютон космологиясында мынандай постулаттар бар:

Ғаламшар мәңгілік тұтас дүние. Космология оны дәл қазіргі кездегі күйінде қарастырады.

Ғаламшардағы уақыт пен кеңістік абсолютті, олар материалды объектілер мен процестерге қатысты емес.

Уақыт пен кеңістік метрикалық түрде шексіз.

Ғаламшар өзгермелі емес. Тек жеке космостық денелер өзгеруі мүмкін.

Ғаламшардың қазіргі космологиялық жобалары А.Эйнштейннің салыстырмалылық теориясына негізделеді. Алғашқы жобаны 1917 жылы А.Эйнштейннің өзі жасады. Оның жобасы бойынша әлем кеңістігі шексіз, материя онда біркелкі орналасқан, денелердің тарты-лысы космологиялық тебілу күшті арқылы жүзеге асырылады.

19) Кванттық физиканың негізгі концепциялары на сипаттама беріңіз.

Квант (нем. Quant, лат. quantumқанша) – физиканың бөлінбес негізгі бөлімі.

1. табиғаты дискретті (үзілісті) физикалық шаманың мүмкін болатын өзгеруінің ең кіші мөлшері;

2. әсер кванты – негізгі физикалық тұрақтылардың бірі;

3. қандай да бір физикалық өрістің қасиетін тасушы бөлшек.

(мысалы, электрмагниттік өрістің кванты – фотон, дыбыс тербелістері өрісінің кванты – фонон).

Физикада болған ең ұлы төңкерiс ХХ ғасырдың бас кезiне дәл келедi. Тәжiрибеде байқалған жылудың сәуле шығару (қызған дененің электромагниттiк толқындар шығаруы)спектрлерiне энергияның үлестiрiлу заңдылықтарын түсiндiру мүмкiн болмады.Максвеллдiң сан рет тексерiлген электромагнетизм заңдарын заттың қысқаэлектромагниттiк толқындар шығару проблемасына қолданбақшы болғанда, кенет «қарсылық керсеттi». Бұл заңдардың антеннаның радиотолқындар шығаруын тамаша сипаттауы және өз кезінде электромагниттiк толқындардың барын осы зандар негiзiнде алдын ала айтуы таңқаларлық едi.

Максвеллдiң қызған дене электромагниттiк толқындар шығару салдарынан унемi энергия жұмсап шығындана отырып, абсолют нөлге дейiн салқындауы тиiс деген электродинамикасы мағынасыз тұжырым жасауға келтiрiлген-дi.

Классикалық теория бойынша зат пен толкын шығару арасында жылулық тепе-теңдiк болуы мүмкiн емес. Алайда күнделiктi тәжiрибеде шындығында мұндай ешнәрсе жоқ екенiн керсетедi. Кызған дене озiнiң барлық энергиясын электромагниттiк толқын шығаруға жұмсайды.

Физикада болған ең ұлы революция ХХ ғасырдың бас кезіне келеді тәжірибеде байқалған жылулық сәуле шығару спектрлерінде энергияның үлестірілу заңжылықтарын түсіндіру мүмкін болмады. Максвеллдің сан рет тексерілген электромагнитизм заңдарын заттардың

Классикалық теория бойынша зат пен толқын шығару арасында жылулық тепе-теңдік болуы мүмкін емес. Алайда күнделікті тәжірибеде шындығында мұндай ешнәрсе жоқ екенін көрсетеді. Қызған дене өзінің барлық энергиясын электромагниттік толқын шығаруға жұмсамайды.

Теория мен тәжірибе арасындағы осы қарама- қайшылықтан шығудың жолын іздеу барысында неміс физигі Макс Планк атомдар электромагниттік энергияны жеке порциялармен – кванттармен шығарады деп болжаған.

Әрбір порцияның Е энергиясы оны шығару жиілігі v-ге

E=hv

Пропорционалдық коэфиценті Һ Планк тұрақтысы деп аталады.

 

20) Эйнштейннің салыстырмалы теориясының физикалық мәнін анықтаңыз.

Эйнштейннің салыстырмалы теорияларының екі түрі белгілі: жалпы және арнайы.

Жалпы салыстырмалылық теориясында кеңістік- уақыт қатынастарының материалдық процестерге қатысының жаңа жақтары ашылды. Жалпы салыстырмалылық теориясы инерциялық және гра-витациялық массалардың эквиваленттік принципінен шығады. Атап айтқанда, массалардың эквиваленттік принципінің негізінде салыстырмалылық принципі қалыптасты, ол жалпы салыстырмалылық теориясында табиғат заңдарының инварианттылығын бекітті.

Салыстырмалылық теориясы кеңістіктің ауырлық күшінің әсерінен майысатындығын және уақыт барысының күшті гравитациялық өрістерде баяулайтыкын анықтады.

Жалпы салыстырмалылық теориясының фантастикалық болжамдарының бірі - өте күшті тартылыс өрісінде уақыттың толық тоқтайтындығы туралы. Тартылыс күші артқан сайын уақыттың баяулауы да күшейе түседі. Уақыттың баяулауы жарықтың гравитациялық қызыл орын ауыстыруы арқылы байқалады да, толқындар үзындығы артқан сайын оның жиілігі азая береді. Белгілі бір жағдайда толқын үзындығы шексіздікке, ал жиілігі нөлге ұмтылады.

Салыстырмалылық теориясы уақыт пен кеңістіктің бірлігін көрсетті, кеңістік-уақыттық төртөлшемдік контимуум туралы түсінік қалыптасты.

Салыстырмалылық теориясы масса мен энергияны e=mc2 қатынасымен байланыстырды, мұнда С - жарық жылдамдығы.

Салыстырмалылық теориясында екі заң - зат массасының және энергиясының сақталуы заңдары бірігіп, энергия және зат массасының сақталуы деген бір заңға айналды.

Ал арнайы салыстырмалылық теориясы бұл- вакуумда жарық жылдамдығынан аз, соның ішінде жарық жылдамдығына жақын жағдайдағы қозғалысты, механика заңдарын, кеңістіктік-уақыт қатынасындағы әртүрлі қозғалыс жылдамдықтарын сипаттайтын теория. Арнайы салыстырмалық теория шеңберінде Ньютонның классикалық механика теориясы төмен жылдамдықтардың жақындасуы болып табылады. Гравитациялық өрістегі арнайы теорияның жалпылануы жалпы салыстырмалық теориясы деп аталады. Арнайы салыстырмалық теориямен сипатталатын физикалық процестердің классикалық механика болжамдарынан ауытқуы релятивистік эффекті деген атауға ие, ал мұндай эффектілер жүзеге асатын жылдамдықтар релятивтік жылдамдық деп аталады. Арнайы салыстырмалық теориясының классикалық механикадан негізгі айырмашылығы кеңістіктік және уақыт сипаттамаларының жылдамдыққа тәуелдәлігі болып табылады.

21) Энтропияның статистикалық мағынасын талдаңыз.

Энтропия- тұйық термодинамикалық жүйедегі өздігінен жүретін процестің өту бағытын сипаттайтын күй функциясы.Энтропияның күй функциясы екендігі термодинамиканың екінші заңында тұжырымдалады.Энтропия-күй функциясы,термодинамикалық тепе-теңдік күйдегі макроскоптық денелерге тән қасиет.Халықаралық жүйеде дж/К арқылы өрнектеледі.Энтропия ұғымы ғылымның көптеген салаларында(физика,химия,т.б.) маңызды рөл атқарады.Энтропия түсінігін алғаш енгізген Клаузиус. Оның физикалық мәнін қарастыру үшін изотермиялық процесс кезіндегі жылу мөлшерінің Q жылу беруші дененің температурасына Т қатынасын қарастырады, бұл қатынасты келтірілген жылу мөлшері деп атайды. Кез-келген қайтымды процесс кезінде денеге берілетін келтірілген жылу мөлшері нольге тең. Термодинамикада қайтымды процесс үшін: Δ S = 0, ал қайтымсыз процесс үшін өседі: Δ S > 0. Бұл өрнектерді біріктіріп, Клаузиус теңсіздігін алуға болады: Δ S ≥ 0.

Жүйенің энергиясы нақты бір мəнге ие болмайтындықтан энтропия канондық үлестірудің орта мəні негізінде есептеледі Сонда энтропияны мынадай өрнекпен есептеуге болады: S = k l nW(U, l). U - термодинамикалық ішкі энергия, U = E. Энтропия жүйенің термодинамикалык күйінің функциясы екендігін көрсетеді.

Статистикалық анықтама бойынша энтропия тепе-теңдік күйде максимум мəнге ие болады, яғни кез келген тепе-теңдікте емес күйлердің энтропиясы тепе-теңдік жағдайдан кем болады. Бірақ тепе-теңдікте емес түйықталған жүйе жылулық қозғалыстардың салдарынан тепе-теңдік күйге келетіндіктен тепе-теңдікте емес жүйелердің энтропиясы ұлғаяды. Бұл тұжырым энтропияның өсу заңы деп аталады. Энтропияның жүйенің күйін сипаттайтын параметр ретіндегі мағынасының өзі ол жүйенің «тепе-теңдікте еместігінің» дəрежесін сипаттайтындығында. Статистикалық теорияда энтропияның өсу заңының статистикалык мағынасы көрнекі түрде түсіндіріледі: ішкі өзгерістердің нəтижесінде жүйе ықтималдығы үлкен күйлерге ұмтылады, яғни саны көп микрокүйлер ғана нактыланады. Ал тепе-теңдік күйден жүйе өздігінен шықпайды, себебі бұл жүйеге термодинамикалык ықтималдықтың үлкен мəні сəйкес келеді. Түйықталған жүйедегі үрдістердің жүру бағыты мынадай қатынаспен сипатталады: dS≥0

Тұйықталған жүйенің тепе-теңдік күйге өтуін қарастырайық. Тепе-тендік қалып жүйенің негізгі қасиеттерінің теңескендігін көрсетеді. Барлық өлшемдердің орта мəндерінің орнығуы, біртекті мəнге келуі үрдістің сыртқы əсерсіз, өздігінен жүру себебінен болады. Бұл жағдайда энтропия артатын болғандықтан жүйе тепе-теңдік қалыпқа ұмтылғанда жүретін үрдістер қайтымсыз болады. Қайтымсыз үрдісті еш уакытта бастапқы қалпына кері əкелуге болмайды деп деп түсіну қате. Егер жүйе А күйінен В күйге өтсе, сыртқы əсерлерді пайдаланып оны В күйінен кері А күйіне қайтаруға болады, бұл жағдайда жүйе АВ үрдісіне қарсы бағытта өтеді. Қайтымсыздық деп тіке

жəне кері үрдістерде қоршаған денелерде кейбір кейбір өзгерістердің қалуын айтады.

Нақты үрдістер қайтымсыз болады. Бірақ моделдік жобалауда, кейбір механикалық, электромагниттік құбылыстарды, үйкелісті, ортаның тұтқырлығын, тоқ жүргендегі жылудың бөлінуін т.б. ескермесе, қайтымды деп қарастыра аламыз. Осы сияқты термодинамикадағы тепе-теңдіктегі үрдістер де, тұйықталған жүйеде энтропия өспейтін болғандыктан (dS = 0), қайтымды үрдістерге жатады. Шындығында да, белгілі бір дененің күйі басқа объектімен əсерлескенде, əрбір уақыт мезетінде, сыртқы параметрлер жəне температура арқылы анықталады.

Энтропия хаосқа ену шамасын анықтауда, әсіресе қоғамдық және жеке тарапта, қолданылады. Энтропия шығармашылықтың қарама-қайшылығы болып табылады. Энтропияның жоғарылауы немесе төмендеуі мағынаны жоғалтып ұқсастықты жоғарылатады. Қоғамдық жаппай күйреу және оның ізімен өркениеттен нақты бағытталған тіршілік етуге ұмтылыс дәл осы мағынадағы энтропияның жоғарылауының айқын мысалы болып табылады.

22) Физикалық өзара-әрекеттерді “Ұлы біріктіру” мәселесін талдау.

Физикалық әрекеттесу - байланыс, өзара әрекеттесу және қозғалыс материяның негізгі атрибуттары. Дененің барлық қасиеттері өзара әрекеттесуден шығады және олардың құрылымдық байланыстарының нәтижесі болып саналады. Өзара әрекеттесу деген уақыт пен кеңістік шеңберінде бір объектіге материя және қозғалыс алмасуы арқылы әсер етуі.

Әрбір өзара әрекеттесудің негізіне заттардың өздеріне ең басынан қатысы бар қасиеттер жатады. Бөлшектердің өзара әрекеттесуге қабілеттерін тасушы, әрі өзара әрекеттесудің сандық өлшемі заряд болып табылады. Зарядтың ең кіші дискреттік шамасын (квантты) жекелеген заряд ретінде қарастырады. Өзара әрекеттесу күші кез келген жағдайда әрекеттесетін екі бөлшектің көбейтіндісіне тура пропорционал, ал өте күрделі түрде бөлшектердің арасындағы қашықтыққа байланысты.

Қазіргі көзқарастар бойынша, кез келген өзара байланыс түрінің өзіндік физикалық агенті бар, яғни онсыз өзара әрекеттесу болмайды. Заттардың бір-біріне тартылуы немесе тебілуі оларды бөліп туратын орта арқылы беріледі. Ондай орта - вакуум. Өзара әрекеттесу теориясын жасаған кезде процестің белгілі бір жобасы пайдаланылады: фермион - заряд бөлшектер маңында бозон-бөлшектерін тудыратын өріс қалыптастырады. Екі реальды бөлшек белгілі бір әрекеттесу радиусында бір-бірімен қозғалмалы бозондарымен алмаса бастайды, яғни бір бөлшек бозон бөлген кезде екіншісі оны жутып, өз бозонын оған береді немесе керісінше, бозондармен алмасу бөлшектердің арасында тартылу немесе тебілу қубылыстарын қамтамасыз етеді.

Философияның методологиялық функциясы ең алдымен танымдық және практикалық әрекеттің жалпы, универсалды алғы шарттарын (ережелері мен принциптерін) қалыптастырумен байланысты болады және ол ең жалпы ұғымдардың - категориялардың көмегімен жүзеге асады. Категорияларға мыналар жатады: “бүтін” және “бөлік”, “жүйе”, “құрылым”, “элемент”, “байланыс”, “қатынас”, “форма” және “мазмұн”, “жалпы”, “ерекше” және “жалқылық”. Дәл осылардың көмегімен алуантүрліліктің тұтастығының философиялық принципі методологиялық дауысқа ие болады.

Жоғарыда келтірілген категориялардың барлығы өзара байланысты. Біз талдауды олардың ішіндегі ерте кезден белгілісі “бүтін” және “бөлік” ұғымдарынан бастаймыз. “Бөлік” және “бүтін” ұғымдары екі жағдайды білдірді: 1) объективті заттар қарапайым, жай заттардан құралған; 2) адамдар бастапқы нәрсені бұзып, оны жай құрамдастарға (бөліктерге) бөле алады. Тарихи тұрғыда “бүтін” ұғымы күнделікті практикада ұшырасатын аяқталған, толған заттарға қатысты айтылуы қалыптасты. Ал бұл ұғымды шексіз объективті әлемге қолдану үлкен қиындықтарға әкелді. Және бұл жаңа заманнан бастап белгілі болды.

23) Бейстационарлық космологиялық концепцияларға сипаттама беріңіз.

Космология, ғарыш ілімі – Ғаламның біртұтастығы және оның астрон. бақылаулар арқылы танылған бөлігі жайлы ілім; астрономияның бір бөлімі. К-ның тұжырымдары физиканың заңдары мен астрон. бақылаулардың деректеріне, сондай-ақ адамзат қоғамының әр түрлі дәуірлеріндегі филос. принциптерге сүйенеді. Алғашқы К-лық түсініктер өте ерте заманда адамдардың дүниедегі өз орнын анықтау, түсіну әрекеттерінен шыққан. Бәрінен гөрі Демокриттің, Пифагордың, Аристотельдің (б.з.б. 5–4 ғ-ларда) ежелгі дәуірдегі филос. мектептерінің К-лық көзқарастары қатаң логикалық талаптарды қанағаттандырды. Астрономия, т.б. жаратылыстану білімдерінің жинақталуы нәтижесінде және Ғалам туралы әр түрлі филос. пайымдаулардың негізінде дүние құрылымын тұтас алып қарастырудың ең алғашқы әрекеті – дүниенің геоцентрлік жүйесі (Птолемей) жасалды. Бұл жүйенің негізгі К-лық идеялары: Жер қозғалмайды әрі ол Ғаламның кіндігі, Ғалам кеңістік бойынша шектелген, «аспан» мен «жердің» табиғаты бір-бірінен мүлдем алшақ. Кейінірек (16 ғ-да) астрономия мен жаратылыстану ғылымында төңкеріс болған дүниенің гелиоцентрлік жүйесі (Н.Коперник) жасалды.

Классикалық ғылымда ғаламшардың стационарлық күй теориясы қарастырылған, яғни ғаламшар бұрын қандай күйде болса, қазір де сол күйде деп есептеледі.

Классикалық Ньютон космологиясында мынандай постулаттар бар::

Ғаламшар мәңгілік түтас дүние. Космология оны дәл қазіргі кездегі күйінде қарастырады.

Ғаламшардағы уақыт пен кеңістік абсолютті, олар материалды объектілер мен процестерге қатысты емес.

Космологиялық зерттеулер бірнеше алғышарттарға негізделеді. Біріншіден, дүниенің физика ғылымы қалыптастырған әмбебап заңдары барлық Әлем үшін негізгі заңдар болып табылады. Екіншіден, астрономдар жүргізген барлық бақылаулардың бүкіл Әлемге қатысы бар. Үшіншіден, нақты ақиқат ретінде бақылау жүргізуші адамзаттың өмір сүру мүмкіндігіне шек келтірмейтін қорытындылар саналады.

Космологияның жасаған қорытындылары сонымен әлем дамуының және пайда болуының жобалары болып саналады.

Барлық заңдар мен ғылыми теориялар жобалар болып саналады, өйткені ғылымның даму процесінде олар басқа концепциялармен ауыстырылуы мүмкін.

Космологияда біртекті изотропты күйдегі кеңейе беретін Әлемнің жобасы цабылданған, ол 1916 жылы Альберт Эйнштейн жасаған салыстырмалылық теориясы мен тартылыстың релятивистік теориясына негізделеді.

Бұл жобаның негізіне екі болжамды жатқызады: 1) Әлемнің касиеттері оның барлық нүктелерінде (біртектілік), барлық бағыттары бойынша (изотроптылық) бірдей; 2) гравитациялық өрістің ең негізгі сипаттамасын Эйнштейннің теңдеулері береді.

Бұл жобаның маңызды бір бөлігі — оның стационарлық еместігі. Бул салыстырмалылық теориясының екі постулатымен анықталады: 1) салыстырмалық принципі — яғни барлық инерциялық жүйелерде олардың бір-біріне қатысты алғанда қандай жылдамдықпен қозғалғанына қарамастан барлық заңдар сақталады; 2) жарық жылдамдығының тұрақтылығының тәжірибе жүзінде анықталуы.

24) Философия мен ғылым арасындағы байланысты талдау.

Философия мен ғылым арасындағы қатынастардың ұзақ тарихы бар. Антикалык дәуірде және орта ғасырларда олардың арасындағы айырма аңғарылмады. Ол кезде ғылым қазіргі кездегімен салыстырғанда әлсіз болды. Ғылымда философияның кағидалары жүретіні қазір белгілі жайт. Ол ұстанымдардың дұрыстығына тәжірибелермен көз жеткізіледі. Мысалы, ғылымда философияның дүниенің шексіздігі, материяның тереңдігі, оның бірлігі мен көптүрлілігі туралы ұстанымы түйінделеді. Осы сияқты, математикамен бірлесе отырып та философияның кағидалары тексеріледі. Физикалық тәжірибелер арқылы тек физика ғана емес, сонымен коса оның құрамындағы математика да, философия да тексеріледі. Философияның әдіснамалық функциясы оның ғылымдарға бағыт беруші әсерінен көрінеді. Сонысымен олардың мейлінше тиімді бейнеде дамуына септігін тигізеді, өзінің дамуындағы қиындықтардан өтуіне көмектеседі. Философияның әдіснамалық функциясы белгілі бір мақсатқа, мысалы, ғылыми білімді тиімді құрылымдаудың, эстетикалык шығармашылықтың, әлеуметтік практиканың алдына қойылған максаттарға жету үшін колданылатын әдістерді іріктеп ала білумен айқындалады. Философияның өзіне тән тұйық емес, іргелі зерттеу әдісі, әрекет ұстанымдары туралы сөз болады. Ғылыммен айналысу дүниеге белгілі бір құндылықтық қатынастарды әкеледі. Ғылымда ақиқат және оған алып баратын эмпириялық және теориялық әдістер бөрінен де жоғары бағаланады, бұлар ғылым үшін ең қымбат құндылық

Ғылым философиясы—ғылымды адам іс-іәрекетінің ерекше аясы және ұдайы дамудағы білімнің жүйесі деп қарайтын философияның тарауы. Ғылымда білімді философияның гносеологиялық және методологиялық тұрғыдан зертеудің аздаған тарихы болғанымен, Ғылым философиясы –соңғы кезде 20 ғасыр кеңінен тарй бастады. Ең алғашқы бұл термин логикалық позитивтер деп аталатын философтардың еңбектерінде қолданылып, ғылым тілін философиялық тұрғыдан зерттеулер тек ғана формальдық (математикалық) логика шеңберінде болуы керек. Ал ғылыми ғымдарды эмпирикалық, тәжірибе, байқау арқылы түсіндіруге болады деп түсіндірілді. Ғылым, бұл концепция бойынша— адамның ең жоғарғы ісі, ал ғылым философияның бір ғана функциясы осы жеке ғылымдарда, логикалық, методологиялық тұрғыдан қамтамассыз етілуі. Бері келе ғылым философиясы біржақты екендігі байқалғаннан кейін оның проблематикасына өзгерістер енгізілді. Қазіргі кезде ғылым философиясы ғылымның құрылымы мен қатар, оның тарихын зерттеуге бет бұрып отыр.

25) Физикалық өзара-әрекеттердің түрлері және олардың кванттық табиғатын талдау.

Өзара әрекеттесу деген уақыт пен кеңістік шеңберінде бір объектіге материя және қозғалыс алмасуы арқылы әсер етуі.

Әрбір өзара әрекеттесудің негізіне заттардың өздеріне ең басынан қатысы бар қасиеттер жатады. Бөлшектердің өзара әрекеттесуге қабілеттерін тасушы, әрі өзара әрекеттесудің сандық өлшемі заряд болып табылады.Қазіргі көзқарастар бойынша, кез келген өзара байланыс түрінің өзіндік физикалық агенті бар, яғни онсыз өзара әрекеттесу болмайды. Заттардың бір-біріне тартылуы немесе тебілуі оларды бөліп тұратын орта арқылы беріледі. Ондай орта – вакуум.


Дата добавления: 2015-12-16; просмотров: 1; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!