Физиканың мақсаты. Физикалық заңдылықтардың ерекшеліктерін талдау.



Физика – табиғат туралы ғылым ретінде «бірінші ұстаз» атанған гректің ұлы ойшылы Аристотельдің шығармаларында баяндалды. «Физика» грекше фюзис-табиғат дегенді білдіреді. Бұл сөздің ғылыми мағынасын байытуда тарихта «екінші ұстаз» атанған біздің ұлы бабамыз - Әбу Насыр әл-Фарабидің еңбегі зор. Ал орыс тіліне «физика» деген сөзді алғаш енгізген ұлы ғалым М.В. Ломоносов болатын.Физика – табиғат туралы ғылым.

Физикалық құбылыстарға жататындар:
1) механикалық құбылыстар (мысалы, ұшақтар мен автомобильдердің қозғалысы, маятниктердің тербелісі мен құбыр бойынша сұйықтықтардың ағысы, Жердің Күн айналасында және орбиталық станциялардың Жер айналасында айналуы); 2) электрлік құбылыстар (мысалы, электрленген денелердің тартылуы мен тебілуі, электр тогы және т. б.); 3) магниттік құбылыстар (мысалы, магниттердің темірге әсері, токтардың магниттік өзара әрекеті, Жердің компас тіліне әсері және т. б.); 4) оптикалық құбылыстар (жарықтың әр түрлі орталарда таралуы, айналардан жарықтың шағылуы, әр түрлі жарық көздерінің жарық шығаруы және т. б.); 5) жылу құбылыстары (мұздың еруі, судың қайнауы, қардың түзілуі, металдардың жылулық ұлғаюы, электрлік жылытқыш аспаптардың әрекеті және т. б.);
6) атомдық құбылыстар (мысалы, атом бомбаларының жарылысы мен жұлдыздардың қойнауындағы болатын процестер және т. б.)
Физиканың негізгі мақсаты - табиғатта болып жатқан әр түрлі физикалық құбылыстарды зерттеп, оларды өзара байланыстыратын заңдарды ашу.

Физикалық заңдылықтарды екіге бөліп қарастыруға болады: үдемелі және статистикалық. Үдемелі заңдылықтар өзінің классикалық үлгісін Ньютонның механикасынан және Максвеллдің классикалық элоктромагниттік қағидасынан бастауын тапты.Осы заңдылықтар белгілі бір құбылыстар арасындағы бірмәнді байланысты беріп, сол заңдылықтардың келешектегі дәлме-дәл күйін бастапқы шарттарға сүйене отырып анықтауға мүмкіндік береді. Статистикалық заңдылықтар динамикалық заңдылықтарға қарағанда бірмәнді қасиетке ие емес құбылыстарды сипаттайды. Статистикалық заңдылық жаппай бірыңғай көріністердің көпшілігінің қайталанғыштығының нәтижесі болып табылады, әрбір құбылыс кездейсоқ мәнге ие. Статистикалық заңдылықтар ауыр радиоактивті элемент ядросының ыдырауы кезінде жүзеге асады, яғни бұл заңдылықтың орындалуы сыртқы факторлардан тәуелсіз.

8) Классикалық механика мен термодинамиканың негізгі концепцияларына сипаттама беріңіз.

Заттар қозғалысының ең қарапайым түрі – механикалық қозғалыс. Механикалық қозғалыс деп уақыт өзгерісіне байланысты механикалық денелердің кеңістікте орын ауыстыруын айтады. Классикалық механиканың зандарын толық түсіну үшін мынандай шамалар енгізіледі: масса, күш, инерциялық санақ жүйесі,Ньютон заңдары, Галилейдің салыстырмалылық принципі.

Классикалық механика – механикалық денелердің баяу қозғалысын сипаттайды. Классикалық механика мынандай үш бөлімнен тұрады: кинематика, динамика, статика.

Физикалық вакуумның классикалық механикаға енгізілуі қашықтан әсер ету күштерін жоққа шығарады, инерция күшінің мәселесін, сонымен қатар Кулон заңының сингулярлығын,Ньютонның дүниежүзілік тартылыс күшінің проблемаларын шешеді.

Классикалық механиканың қағидасы бойынша барлық санақ жүйелерінде уақыт ағымы бір-біріне тең болады. Сондықтан да , яғни (2)

(3)(2) және (3) теңдеулері классикалық механикадағы жылдамдықтарды қосу әдісін береді.

Арнайы салыстырмалы теорияның негізін қалаушы –А. Эйнштейн. Бұл теорияның негізіне, Ньютонның классикалық механикас ындағы сияқты, кеңістік пен уақыттың біртектілігі алынған. Сондықтан арнайы салыстырмалық теория кеңістік пен уақыттың физикалық теориясы ретінде қаралды. Арнайы салыстырмалы теорияның қағидалары ретінде 1905 жылы А. Эйнштейн тұжырымдаған екі постулат алынады:
Салыстырмалы принцип. Табиғаттағы кез-келген физикалық құбылыс барлық инерция-лық жүйеде бірдей өтеді.

Жылдамдықтың инварианттық принципі. Бос кеңістіктегі (ваккумдегі) жарық жыл-дамдығы жарық көзі мен жарық қабылдағыштың қозғалысына тәуелсіз тұрақты шама.

Термодинамиканың бірінші бастамасы — термодинамикалық жүйелер үшін энергияның сақталу заңы; бұл заң бойынша жүйеге берілетін жылу оның ішкі энергиясын өзгер-туге және жүйенің сыртқы күштерге қарсы жұмысына жұмсалады. ΔQ = dU + ΔА

Термодинамиканың екінші бастамасы — статистикалық нысандардың (мысалы, атом-беидардың, молекулалардың) үлкен санынан тұратын жүйелердің өз бетінше ықтималды-ғы аздау күйден ықтималдығы молырақ күйге ауысу процесін сипаттайтын табиғаттың түбегейлі заңы.

Термодинамиканың үшінші бастамасы — абсолюттік нөлге жуық температура маңында, реакцияның жылу эффектісі мен максимал жұмыстысипаттайтын қисық сызық-тар өзара бірігіп кетеді, ал олардың ортақ жанамасы температуа осіне параллель болады дейтін, химиялық реакцияларға тән эксперименттік нәтижелерді қорытындылаудан туа-тын постулат.

9) Классикалық электродинамиканың негізгі концепцияларының физикалық мәнін айқындаңыз

Қазіргі заман техника мен ғылымның екпінді дамуымен сипатталады. Даму негізінде - фундаменттік ғылымдардың жетістіктері. Солардың ішінде физиканың алатын орны ерекше. Бұл ғылым ғылми-техникалық прогресстің негізі болып табылады. Әсіресе, электромагниттік процесстерді зерттеу және қолдану кең өріс алған. Электромагниттік өрісті зерттейтін ғылым электродинамика – теориялық физиканың маңызды бөлімі болып табылады. Бұл саланың тарихи маңызы: ол физика ғылымының дамуына ерекше түрткі берген сала. Электродинамиканың теориялық принциптерінің қалыптасуы кезінде классикалық физиканың шектелгендігін көрсетіп, жаңа физиканың пайда болуына себепші болды. Классикалық физиканың теориялық негіздерінің кемшілікте-рі оптикалық құбылыстарды классикалық физика тұрғысы-нан түсіндіру әрекеттерінің сәтсіздігінен көріне бастады. Ғылымда пайда болған дағдарысты жеңу жолында физика-ның фундаменттік, яғни негізгі принциптерін қайта қарау қажет болды. Осының нәтижесінде физиканың жаңа салала-ры: салыстырмалық теория және кванттық механика пайда болды. Соның көмегімен көптеген құбылыстар мен зат қасиеттері түсіндірілді, техникада қолданыс тапты. Сонымен, физика ғылымының негіздеріне сипаттама берейік. Бұл ғылым - тәжірибелік болса да, теориясыз дамуы мүмкін емес. Теория ғана оны түсінікті қылады, әрі практика-да қолданылатын жасайды. Физикалық теория өте ауқымды дүние болып табылады, оның ішінен фундаменттік бөлім бөлініп шығады. Бұл бөлім материя құрылысы және қозғалы-сы жайындағы білімнің негізін құрайды. Осы фундаменттік теория физиканың басқа бөлімдерін біріктіріп, бағыттап тұрады. Педагогтік тұрғыдан фундаменттік білімнің маңызы әрқашан жоғары болды. Ол оқушылардың ғылыми көзқара-сын қалыптастырады. Ол мектептік курсының құрамына кіріп, әлемнің біртұтас көрінісін туғызады. Өткен ғасырда материалдық әлемнің бірлігі жөніндегі көзқарас жаңа қырынан көрінді, бірнеше фундаменттік өзара әсерлер бөлініп алынды. Бұлар материалдық объектілердің қозғалысы мен күйінің өзгерісіне жауапты.

Электродинамика – бұл материяның ерекше бiр түрiнiң – электромагниттiк өрiстiң табиғатының заңдылықтары мен қасиеттерi туралы, және электрлiк зарядталған денелер немесе бөлшектердiң арасында өзара әсерлесуiн зерттейтiн ғылым. «Классикалық электродинамика» нақты алғашқы өрістер теориясы болып табылады, яғни электрлік, магниттік және оптикалық әсерлерді біріктіруші.Классикалық электродинамиканың ядросы болып Максвелл теңдеуі, сонымен қатар Лоренц күші(күштің шамасын әрекет етуші электромагниттік өрісте анықтайды) табылады. Максвелл теңдеуінде полевая физика және классикалық электродинамика сәйкес келсе, алайда бұл Лоренцта сәйкес емес.Сонымен қатар полевая физика көптеген жаңалықтарды электродинамикаға енгізеді. Мысалы, бұл магниттік зарядтың болуын жоққа шығарады. Лоренц күші — электрмагниттік өрісте қозғалатын зарядталған бөлшекке әсер ететін күш. Максвелл теңдеуі - классикалық электродинамиканың негізгі теңдеулері; кез келген ортадағы жэне вакуумдағы барлық электромагнит/электромагниттік кұбылыстарды толығымен сипаттайды.

10) Физикалық өзара-әрекет пен қозғалыстың негізгі түрлеріне сипаттама беріңіз

Физикалық әрекеттесу - байланыс, өзара әрекеттесу және қозғалыс материяның негізгі атрибуттары. Дененің барлық қасиеттері өзара әрекеттесуден шығады және олардың құрылымдық байланыстарының нәтижесі болып саналады.

Өзара әрекеттесу деген уақыт пен кеңістік шеңберінде бір объектіге материя және қозғалыс алмасуы арқылы әсер етуі.

Әрбір өзара әрекеттесудің негізіне заттардың өздеріне ең басынан қатысы бар қасиеттер жатады. Бөлшектердің өзара әрекеттесуге қабілеттерін тасушы, әрі өзара әрекеттесудің сандық өлшемі заряд болып табылады. Зарядтың ең кіші дискреттік шамасын (квантты) жекелеген заряд ретінде қарастырады. Өзара әрекеттесу күші кез кел-ген жағдайда әрекеттесетін екі бөлшектің көбейтіндісіне тура пропор-ционал, ал өте күрделі түрде бөлшектердің арасындағы қашықтыққа байланысты.

Қазіргі көзқарастар бойынша, кез келген өзара байланыс турінің өзіндік физикалық агенті бар, яғни онсыз өзара әрекеттесу болмайды. Заттардың бір-біріне тартылуы немесе тебілуі оларды бөліп туратын орта арқылы беріледі. Ондай орта - вакуум. Өзара әрекеттесу теория-сын жасаған кезде процестің белгілі бір жобасы пайдаланылады: фермион - заряд бөлшектер маңында бозон-бөлшектерін тудыратын өріс қалыптастырады. Екі реальды бөлшек белгілі бір әрекеттесу радиу-сында бір-бірімен қозғалмалы бозондарымен алмаса бастайды, яғни бір бөлшек бозон бөлген кезде екіншісі оны жутып, өз бозонын оған береді немесе керісінше, бозондармен алмасу бөлшектердің арасында тартылу немесе тебілу қубылыстарын қамтамасыз етеді.


Дата добавления: 2015-12-16; просмотров: 1; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!