Принцип действия трансформатора

Устройство основные характеристики трансформаторов

Трансформатор — это статическое электромагнитное устройство, имеющее две или более индуктивно связанные обмотки на каком-либо магнитопроводе и предназначенное для преобразования посредством электромагнитной индукции одной или нескольких систем (напряжений) переменного тока в одну или несколько других систем (напряжений), без изменения частоты.

Трансформаторы представляют собой наиболее распространённый класс электрических машин. В зависимости от числа фаз, мощности, уровней напряжения на входе и выходе и других признаков трансформаторы подразделяются на однофазные и трёхфазные, силовые и маломощные, понижающие и повышающие, многообмоточные и автотрансформаторы. В ряде случаев они выполняют специфические функции - преобразование частоты, числа фаз, измерения различных величин и другие. Независимо от этих признаков в любом трансформаторе можно выделить две основных части: магнитную систему и обмотки.

Однофазные трансформаторы подразделяются на: стержневые, в которых обмотки охватывают сердечник; броневые, в которых обмотки охвачены сердечником, и тороидальные (кольцевые). Стержневые и броневые магнитопроводы собирают из отдельных пластин (шихтуют) или навивают из ленты электротехнической стали, а затем пропитывают специальным составом, высушивают и разрезают на специальных станках. Тороидальные трансформаторы всегда навиваются из ленты. При прочих равных условиях они отличаются наименьшим расходом материалов, но их обмотки сложны в изготовлении и практически неремонтопригодные.

Стержневые                      Броневые                       Тороидальные

В качестве магнитных материалов применяются электротехнические стали. Для снижения потерь на гистерезис и вихревые токи в их состав вводится кремний и уменьшается толщина листов, которые изолируются лаками и оксидными плёнками.

Обмоточные провода могут быть медными и алюминиевыми. Медные обладают бесспорными техническими преимуществами, однако, стоимость их значительно выше. При равной проводимости алюминиевые обмотки примерно в два раза легче медных, но имеют больший объём, что влечёт за собой увеличение габаритов и веса магнитопроводов.

В двухобмоточном трансформаторе различают обмотку высокого напряжения – ВН и низкого напряжения - НН. В трехобмоточном трансформаторе (автотрансформаторе) кроме обмотки ВН и НН различают обмотку среднего напряжения - СН. К трансформаторам с 4-мя и более обмотками понятия ВН, СН, НН не применяется (исключение - расщепление обмоток), а вместо этого в названии обмотки указывается ее номер: вторичная, третичная и четвертичная обмотки. При этом первичной считается обмотка с наибольшим напряжением, вторичной - со вторым по величине, третичной - третьим и так далее. Термины первичная, вторичная обмотки по отношению к двухобмоточному трансформатору имеют другое значение - первичной называется та обмотка, к которой подводится электрическая энергия, а вторичной - от которой эта энергия отводится.

Каждый трансформатор имеет следующий набор параметров:

Номинальной мощностью Sном в трех- и многообмоточном трансформаторе называется наибольшая из мощностей его обмоток, а в двухобмоточном - мощность каждой из его обмоток (обмотки двухобмоточного трансформатора выполняются одинаковой мощности).

Номинальным напряжением трансформатора Uном называется наибольшее номинальное напряжение его обмоток. За номинальное напряжение обмотки принимается напряжение между соответствующими зажимами, связанными с данной обмоткой при холостом ходе трансформатора.

Номинальным током трансформатора Iном называется величина тока, протекающая по его первичной обмотке под напряжением Uном и нагрузке Sном.

Группой соединения обмоток трансформатора называется угол между вектором напряжения первичной обмотки и вектором напряжения вторичной обмотки отсчитанный в часах, при условии, что вектор напряжения первичной обмотки направлен на 12-ть часов. Всего существует 12 групп соединения обмоток трансформатора.

Напряжением короткого замыкания Uкзназывается величина напряжения, которое, при замкнутой накоротко вторичной обмотке, необходимо приложить к первичной обмотке трансформатора, чтобы по ней протекал ток Iном. Напряжение короткого замыкания обычно выражается в процентах. Физически, Uкз представляет собой реактивное сопротивление трансформатора, выраженное в относительных единицах.

Током холостого хода Iххназывается величина тока, протекающего по первичной обмотке трансформатора под напряжением Uноми разомкнутой вторичной обмотке. Iххвыражается в процентах от номинального тока трансформатора. Физически ток холостого хода представляет собой полное сопротивление трансформатора в о.е.

Потерями короткого замыкания трансформатора Pкз называется величина активной мощности, которая рассеивается в трансформаторе при замкнутой накоротко вторичной обмотке и токе Iномв первичной. Pкзвыражается в кВт (киловатт).

Потерями холостого хода Qхх называется величина реактивной мощности, рассеиваемая трансформатором в опыте холостого хода. Qхх выражается в кВар (киловар).

Принцип действия трансформатора

Трансформатор представляет собой статический электромагнитный преобразователь тока и напряжения, принцип действия которого основан на явлении взаимоиндукции.

Простейший трансформатор состоит из магнитопровода и расположенных на нём первичной и вторичной обмоток. Если при разомкнутой вторичной обмотке W2 к первичной обмотке W1 приложить напряжение U1, по ней потечет ток холостого хода I0, создающий намагничивающую силу: F1 = I0W1, под действием которой в трансформаторе возникает магнитное поле. Созданный им основной магнитный поток Ф замыкается по сердечнику, поскольку магнитная проницаемость электротехнической стали несоизмеримо больше, чем у воздуха, и сцепляется со всеми витками обеих обмоток, в которых по закону электромагнитной индукции наводятся э.д.с. e1 и e2:

При синусоидальном изменении основного магнитного потока ЭДС e1 и e2 могут быть определены следующим образом:

Полученные уравнения показывают, что ЭДС отстают по фазе от вызвавшего их основного потока на угол 90º, а действующие их значения будут равны:

Отношение: kт = Е12 = W1/W2 называется коэффициентом трансформации и играет важнейшую роль при анализе всех происходящих в трансформаторах процессов.

Виды трансформаторов

Трансформаторы разделяют на:

· Силовые трансформаторы;

· Измерительные трансформаторы;

· Трансформаторы частоты;

· Вольтодобавочные трансформаторы.

Задача силовых трансформаторов - питание сетей и приёмников электроэнергии. Силовые трансформаторы бывают:

· Силовые трансформаторы общего назначения;

· Силовые трансформаторы специального назначения.

Трансформаторы общего назначения включается в сети, не отличающиеся особыми условиями работы, а также служат для питания электроприемников, не отличающихся характером нагрузки или режимом работы. Трансформаторы специального назначения применяются для питания сетей и приёмников электроэнергии, если таковые работают в особых условиях или имеют специфический характер нагрузки или режим работы (например, выпрямительные установки, рудничные и шахтные сети).

Основная функция измерительных трансформаторов - преобразовывать величину напряжения или тока до значений, удобных для приборов и автоматики. Вторая сторона использования измерительных трансформаторов в качестве промежуточного звена при измерениях - наличие гальванической развязки. При наличии гальванической развязки измерительный прибор оказывается изолированным от высоковольтной (сильноточной) цепи, что повышает безопасность работы с ним. Измерительные трансформаторы делятся на:

· Трансформаторы тока (ТТ);

· Трансформаторы напряжения (ТН).

Трансформаторы частоты позволяют удвоить или утроить частоту сети.

Вольтодобавочные трансформаторы предназначены для повышения напряжения в отдельных точках электрических сетей.

Режим работы трансформаторов

Различают несколько режимов работы трансформаторов:

1. Номинальный режим, т.е. режим при номинальных значениях напряжения и тока первичной обработки трансформатора

.

2. Рабочий режим, при котором напряжение первичной обмотки близко к номинальному или равно ему, а ток определяется нагрузкой трансформатора.

3. Режим холостого хода, т.е. режим ненагруженного трансформатора, при котором цепь вторичной обмотки разомкнута (  или подключена к нагрузке с очень большим сопротивлением (например, вольтметр).

4. Режим короткого замыкания трансформатора, при котором его вторичная обмотка замкнута накоротко (  или подключена к нагрузке с очень малым сопротивлением (например, амперметр).

Коэффициент полезного действия (КПД) трансформатора определяется отношением активной мощности Р2 на выходе трансформатора к активной мощности Р1 на его входе

Мощные современные трансформаторы могут иметь КПД больше 99%. В таких случаях мощности Р2 и Р1 настолько близки, что не существует измерительных приборов, способных их отличить. Поэтому КПД определяют косвенным методом, основанном на прямом измерении мощности Р2 и мощности потерь DР.

Так как

,

то

Мощность потерь в трансформаторе равна сумме мощностей потерь в магнитопроводе - РС и в проводах Рпр. Потери в магнитопроводе пропорциональны напряжению первичной обмотки U1. Обычно трансформаторы работают при номинальном напряжении первичной обмотки. Поэтому считают РС= const. Их определяют в опыте холостого хода.

Потери в проводах обмоток определяются токами обмоток, которые в свою очередь зависят от характера нагрузки. Так как нагрузка силовых трансформаторов часто изменяется, то и потери в проводах переменные. Найдем выражение, удобное для их учета.

окончательное выражение для КПД

Выражение показывает, что КПД трансформатора зависит от значений коэффициента мощности нагрузки - cos j2 и от коэффициента загрузки - КЗ.

На практике максимум КПД достигается при средней нагрузке, когда КЗ = 0,7 ¸ 0,5, а


 

 


Дата добавления: 2021-04-24; просмотров: 70; Мы поможем в написании вашей работы!

Поделиться с друзьями:




Мы поможем в написании ваших работ!