Классификация многопроцессорных систем



Классификация по Флинну:

Майкл Флинн предложил в 1966 году следующую классификацию вычислительных систем, основанную на количестве потоков входных данных и количестве потоков команд, которые эти данные обрабатывают:

·   SISD (Single Instruction Single Data): это обычные последовательные компьютеры. Программа принимает один поток данных и выполняет один поток инструкций по обработке этих данных. Иными словами, инструкции выполняются последовательно, и каждая инструкция оперирует минимальным количеством данных (например, сложение двух чисел).

·   MISD (Multiple Instruction Single Data): разные потоки инструкций выполняются с одними и теми же данными. Обычно такие системы не приводят к ускорению вычислений, так как разные инструкции оперируют одними и теми же данными, в результате на выходе системы получается один поток данных. К таким системам относят различные системы дублирования и защиты от сбоев, когда, например, несколько процессоров дублируют вычисления друг друга для надёжности.

·   SIMD (Single Instruction Multiple Data): один поток инструкций выполняет вычисления одновременно с разными данными. Например, выполняется сложение одновременно восьми пар чисел. Такие компьютеры называются векторными, так как подобные операции выполняются аналогично операциям с векторами (когда, например, сложение двух векторов означает одновременное сложение всех их компонентов).

·   MIMD (Multiple Instruction Multiple Data): разные потоки инструкций оперируют различными данными. Это системы наиболее общего вида, поэтому их проще всего использовать для решения различных параллельных задач.системы, в свою очередь, принято разделять (классификация Джонсона) на системы с общей памятью (несколько вычислителей имеют общую память) исистемы с распределенной памятью (каждый вычислитель имеет свою память; вычислители могут обмениваться данными). Кроме того, существуют системы с неоднородным доступом к памяти (NUMA) - в которых доступ к памяти других вычислителей существует, но он значительно медленнее, чем доступ к «своей» памяти.

Системы с общей памятью

Системами с общей памятью называют системы, в которых несколько процессоров имеют общую оперативную память. Чаще всего встречающиеся системы этого типа - компьютеры с многоядерными процессорами (multi-core).

Системы с распределённой памятью

Система содержит несколько процессоров, каждый имеет свою оперативную память. Для обеспечения обмена информацией процессоры соединены каналами связи. Системы с распределённой памятью, в которых каждый вычислительный узел представляет собой полноценный компьютер со своей копией операционной системы, называют кластерными.

Гибридные системы

Многие современные системы представляют собой иерархию описанных выше систем. Например, современные процессоры являются конвейерными процессорами, и имеют набор векторных инструкций (MMX, SSE и т.п.), позволяющих выполнять одновременные вычисления с разными данными.

Классификация Хокни:

Классификация машин MIMD-архитектуры:

·         Переключаемые - с общей памятью и с распределённой памятью.

·         Конвейерные.

·         Сети - регулярные решётки, гиперкубы, иерархические структуры, изменяющие конфигурацию.

В класс конвейерных архитектур (по Хокни) попадают машины с одним конвейерным устройством обработки, работающим в режиме разделения времени для отдельных потоков. Машины, в которых каждый поток обрабатывается своим собственным устройством Хокни назвал переключаемыми. В класс переключаемых машин попадают машины, в которых возможна связь каждого процессора с каждым, реализуемая с помощью переключателей - машины с распределённой памятью. Если же память есть разделяемый ресурс, машина называется с общей памятью. При рассмотрении машин с сетевой структурой Хокни считал, что все они имеют распределённую память. Дальнейшую классификацию он проводил в соответствии с топологией сети.

Классификация Фенга

В 1972 году Фенг (T. Feng) предложил классифицировать вычислительные системы на основе двух простых характеристик. Первая - число n бит в машинном слове, обрабатываемых параллельно при выполнении машинных инструкций. Практически во всех современных компьютерах это число совпадает с длиной машинного слова. Вторая характеристика равна числу слов m, обрабатываемых одновременно данной ВС. Немного изменив терминологию, функционирование ВС можно представить как параллельную обработку n битовых слоёв, на каждом из которых независимо преобразуются m бит. Каждую вычислительную систему можно описать парой чисел (n, m). Произведение P = n * m определяет интегральную характеристику потенциала параллельности архитектуры, которую Фенг назвал максимальной степенью параллелизма ВС.

Классификация Хэндлера

В основу классификации В. Хендлер закладывает явное описание возможностей параллельной и конвейерной обработки информации вычислительной системой. Предложенная классификация базируется на различии между тремя уровнями обработки данных в процессе выполнения программ:

·         уровень выполнения программы - опираясь на счетчик команд и некоторые другие регистры, устройство управления (УУ) пр

·         уровень битовой обработки - все элементарные логические схемы процессора (ЭЛС) разбиваются на группы, необходимые для выполнения операций над одним двоичным разрядом.

Подобная схема выделения уровней предполагает, что вычислительная система включает какое-то число процессоров каждый со своим устройством управления. Если на какое-то время не рассматривать возможность конвейеризации, то число устройств управления k, число арифметико-логических устройств d в каждом устройстве управления и число элементарных логических схем w в каждом АЛУ составят тройку для описания данной вычислительной системы

: (k, d, w)

 

где k - число УУ,- число АЛУ в каждом УУ,- число разрядов в слове, обрабатываемых в АЛУ параллельно.

Классификация Скилликорна

Классификация Скилликорна (1989) была очередным расширением классификации Флинна. Архитектура любого компьютера в классификации Скилликорна рассматривается в виде комбинации четырёх абстрактных компонентов: процессоров команд (Instruction Processor - интерпретатор команд, может отсутствовать в системе), процессоров данных (Data Processor - преобразователь данных), иерархии памяти (Instruction Memory, Data Memory - память программ и данных), переключателей (связывающих процессоры и память). Переключатели бывают четырёх типов - «1-1» (связывают пару устройств), «n-n» (связывает каждое устройство из одного множества устройств с соответствующим ему устройством из другого множества, то есть фиксирует попарную связь), «n x n» (связь любого устройства одного множества с любым устройством другого множества). Классификация Скилликорна основывается на следующих восьми характеристиках:

·         Количество процессоров команд IP

·         Число ЗУ команд IM

·         Тип переключателя между IP и IM

·         Количество процессоров данных DP

·         Число ЗУ данных DM

·         Тип переключателя между DP и DM

·         Тип переключателя между IP и DP

·         Тип переключателя между DP и DP

 


Дата добавления: 2021-03-18; просмотров: 70; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!