Отростки нервных клеток, покрытые оболочками, называются нервными волокнами.

МОРФОЛОГИЯ НЕРВНОЙ ТКАНИ

1. Нейроны и нейроглия

2. Нервные волокна

3. Нервные окончания

Вопрос_1

Нейроны и нейроглия

Нервную систему формирует нервная ткань. Клетки образующие нервную ткань делятся на две группы – это нейроны и клетки глии.

Определение_1:

Нейрон - это структурно-функциональная клеточная единица нервной системы, которая с помощью своих отростков осуществляет контакты с другими нейронами и участвует в об­разовании рефлекторных дуг.

 

Нейроны отличаются от других клеток организма следующими свойствами:

- способностью приходить в состояние возбуждения, т.е. реагировать на раздражение изменением обмена веществ и свойств клеточной мембраны,

- способность принимать сигнал от другой клетки;

- способностью проводить возбуждение (импульс) по нервным волокнам, и только в аксопетальном, т.е. от дендритов к аксону, направлении;

- генерировать нервное возбуждение;

- нейроны - высокоспециализированные клетки;

- в течение жизни нейроны не делятся;

- структуры нейрона могут регенерировать (например, аксон, или дендриты).

В зависимости от выполняемой функции в составе рефлекторной дуге различают:

– нейроны рецепторы (чувствительные, афферентные),

– вставочные (ассоциативные) нейроны,

– двигательные (эфферентные) нейроны.

Афферентные нейроны воспринима­ют импульс, эфферентные передают его на ткани рабочих органов, побуж­дая их к действию, а ассоциативные осуществляют связь между нейронами.

Нейроны отличаются большим разнообразием форм и размеров. Диаметр тел клеток-зерен коры мозжечка 4-6 мкм, а гигантских пирамидных нейронов двигательной зоны коры большого мозга – 130-150 мкм.

 

Рисунок 1

 

В нейроне выделяют перикарион (тело) и отростки. Перикарион состоит из клеточной оболочки (мембраны), ядра и цитоплазмы. Основная функция перикариона состоит в осуществлении обмена веществ. Перикарионы образуют серое вещество нервной ткани.

Ядро занимает центральное положение, содержит мало хроматина, хорошо выраженное ядрышко. Из-за высокой активности метаболизма нейронов хроматин в их ядрах находится в деспирализованом (раскрученном) состоянии, в результате чего происходит непрерывное считывание генетической информации (транскрипция) и образование (трансляция) нейропептидов и белков.

Снаружи нейрон покрыт клеточной мембраной (нейролеммой), которая обеспечивает следующие функции:

- транспортная функция состоит в обеспечении транспорта ионов и биологически активных веществ (нейромедиаторов и гормонов);

- рецепторная функция состоит в восприятии внешних сигналов;

- обеспечивает проведение импульса вдоль нервного волокна.

Цитоплазматическая мембрана нейрона обладает способностью генерировать и проводить импульс, за счет встроенных в нее интегральных белков. Они работают как ионно-избирательные каналы – пропуская одни ионы и не позволяя проходить в клетку другим ионам. В результате на мембране формируется разность потенциалов, создающая возможность проведения нервного импульса.

Рисунок 2

Цитоплазма нейронов состоит из гиалоплазмы, органоидов и включений. Основные органоиды нейрона:

- эндоплазматическая сеть

- аппарат Гольджи

- митохондрии

- лизосомы

- элементы цитоскелета (микротрубочки, микрофиламенты и микрофибриллы)

- рибосомы и полисомы

Гранулярная эндоплазматическая сеть состоит из мембран с фиксированными в ней рибосомами, на которых осуществляется биосинтез первичной структуры белковых молекул. Комплекс таких мембран под световым микроскопом виден как особое зернистое вещество. При окрашивании оно принимает вид тигровой шкуры, поэтому его называю «тигроид» (или вещество Ниссля). Интенсивность окрашивания этой области отражает активность белково-синтетических процессов в клетке. 

В качестве включений в нейронах встречаются липидные (жировые) капли, гранулы липофусцина и меланина.

Дендриты – это выпячивания перикариона. Они содержат те же органеллы, что и перикарион:

- гранулярная эндоплазматическая сеть,

- полисомы (скопления рибосом),

- мито­хондрии,

- нейротубулы (микротрубочек) и нейрофиламентов.

 

На поверхности дендритов характерно наличие тонких шипикообразных отростков длиной 2-3 мкм. За счет дендритов рецепторная поверхность нейрона увеличивается в 1000 и более раз.

Определение_2:

Аксон (или нейрит)–отросток, по которому импульс передается от тела клетки на орган эффектор.

 

Длина аксона может достигать 1 м (например, клеток блуждающего нерва). Аксон имеет нитевидную форму и является основой нервного волокна. Аксон начинается в виде не покрытого дополнительной оболочкой участка, который называется аксональный холмик, который затем переходит в продолжение – осевой цилиндр. Аксональный холмик наиболее возбудимый участок аксона, является местом генерации нервных импульсов. Совокупность нескольких аксонов формирует нервное волокно, направленное к рабочему органу (эффектору).

Цитоплазма аксона (аксоплазма) содержит микротрубочки, нейрофиламенты, митохондрии, ЭПС, синаптические пузырьки, заполненные нейромедиаторами и плотные тельца. Перемещение аксоплазмы в нейронах идет со скоростью 1-5 мм/сутки, что способствует непрерывному обновлению структурных белков аксона.

По количеству отростков различают:

– униполярные нейроны, имеющие только аксон,

– биполярные, имеющие аксон и один дендрит (встречаются в органах чувств);

– псевдоуниполярный – от тела отходит один общий вырост – отрос­ток, разделяющийся затем на дендрит и аксон (присутствуют в спинальных ганглиях);

– мультиполярные, имеющие аксон и много дендритов (большинство нейронов мультиполярные).

Аксоны  образуют белое вещество нервной ткани.

Аксон оканчиваются разветвлениями, которые называются  телодендронами (telodendron). Каждый телодендрон заканчивают­ся  утолщением – нервным окончанием.

Нейроны – высокоспециализированные клетки, существующие и фун­кционирующие в строго определенной среде. Такую среду им обеспечивает нейроглия. Нейроглия выполняет следующие функции:

- опорную,

- трофическую,

- разграничительную,

- поддержание постоянства среды вокруг нейронов,

- защитную,

- секреторную.

Различают глию центральной и пери­ферической нервной системы. Клетки глии центральной нервной системы делятся на:

- макроглию (глиоциты),

- микроглию.

К макроглии относятся:

- эпендимоциты,

- астроциты,

- олигодендроглиоциты.

Эпендимоциты выстилают желудочки головного мозга и центральный канал спинного мозга. Большинство эпендимоцитов имеют подвиж­ные реснички, вызывающие ток цереброспинальной жидкости. Эпендимный эпителий сосудистых сплетений желудочков мозга продуцирует цереброспинальную жидкость.

Астроциты – клетки отростчатой формы. Они выполняют в основном опор­ную и разграничительную функции. Астроциты накапливают и передают вещества от капилляров к нейронам, захватывают избыток экстрацеллюлярного калия и других веществ, таких как нейромедиаторы, из экстрацеллюлярного про­странства после интенсивной нейрональной активности.

Олигодендроциты (oligodendrocyte) имеют мелкие ядра и немногочисленны отростки. Олигодендроглиоциты присутствуют как в сером, так и в белом веществе. В сером веществе они локализуются вблизи перикарионов. В белом веществе их отростки образуют миелиновый слой в нервных волокнах.

Микроглия представляет собой фагоцитирующие клетки, происходящие из стволовой крове­творной клетки. Ее функция – защита от инфекции и повреждения и уда­ление продуктов разрушения нервной ткани. Клетки микроглии имеют короткие отростки с ответвлениями, что придает клеткам «колючий» вид.

Глия периферической нервной системы (периферическая нейроглия) включает нейролеммоциты (Шванновские клетки) и глиоциты ганглиев (мантийные глиоциты).

Нейролеммоциты формируют оболочки отрост­ков нервных клеток в нервных волокнах периферической нервной системы. Глиоциты ганглиев окружают тела нейронов в нервных узлах и участвуют в обмене веществ нейронов.

 

Вопрос 2

Нервные волокна

 

Определение_3:

Отростки нервных клеток, покрытые оболочками, называются нервными волокнами.

 

Аксон нервной клетки в составе нервного волокна называется осевым цилиндром. По строению оболочек различают миелиновые и безмиелиновые нервные волокна. Оболочку отростков нейронов в ЦНС образуют отростки олигодендроглиоцитов, а в периферической нервной системе – нейролеммо­циты (Шванновские клетки). Миелиновая оболочка состоит из белого белково-липидного комплекса миелина (соотношение 4:1), основная часть липидов – это холестерол, фосфолипиды и цереброзиды.

При образовании миелиновой оболочки ядро и цитоплазма шванновской клетки оттесняется на периферию, а ее плазмалемма двийным слоем как бы забинтовывает осевой цилиндр (количество слоев может достигать 100). Миелиновая оболочка поддерживается в цельном виде наружной оболочкой, которая представляется собой соединительнотканный футляр, который называется неврилемма. В целом нервное волокно покрывает соединительнотканная оболочка – эпиневрий, а каждый нервные пучок волокна дополнительно покрыт периневрием.

Безмиелиновые нервные волокнанаходятся преиму­щественно в составе вегетативной нервной системы. Миелиновые нервные волокнавстречаются как в центральной, так и в периферической нервной системе. Они значительно толще безмиелиновых нервных волокон. Диаметр поперечного сечения их колеблется от 2 до 20 мкм.

В сформированном миелиновом волокне принято различать два слоя оболочки:

- внутренний, более толстый, — слой миелина

- наружный, тонкий, состоящий из цитоплазмы и ядер нейролеммоцитов.

Миелиновый слой содержит периодически встречающиеся узкие светлые ли­нии – насечки миелина, (насечки Шмидта – Лантермана). Насечки представляют собой узкие полоски, пересекающие в косом направлении миелиновую оболочку, образующиеся в результате спирального наслаивания мембраны миелина.

Через определенные интервалы (1-2 мм) видны участки волокна, лишенные миелинового слоя, – узловатые перехваты, или перехваты Ранвье. Отсутствие миелинового слоя в области узловых перехватов объясняется тем, что в этом участке волокна кончается один нейролеммоцит и начинается другой.

В зависимости от скорости проведения возбуждения, длительности фаз потенциала действия и диаметра у теплокровных животных и человека выделяют три основные группы нервных волокон:

- группа А – двигательные или чувствительные волокна до 22 мкм в диаметре, скорость проведения нервного импульса до 120 м/с;

- группа В – преимущественно преганглионарные волокна вегетативной нервной системы, диаметром до 3,5 мкм, и скоростью проведения нервного импульса 18 м/с;

- группа С – преимущественно постганглионарные волокна вегетативной нервной системы, диаметром до 2 мкм, и скоростью проведения нервного импульса 3 м/с.

 

Правило_1:

Скорость распространения нервных импульсов по нервному волокну прямо пропорциональна его толщине

 

С утолщением скорость распространения импульса увеличивается и всегда выше в миелинизированных волокнах. Тонкие волокна, бедные миелином, и безмиелиновые волокна проводят нервный импульс со скоростью 1-2 м/с, тогда как тол­стые миелиновые – со скоростью 5-120 м/с.

В безмиелиновом волокне волна деполяризации мембраны идет по всей аксолемме, не прерываясь, а в миелиновом волокне возникает только в области перехвата.

 

Вопрос 3

Нервные окончания

 

Нервные волокна заканчиваются концевыми аппаратами - нервными окончаниями.

Различают три группы нервных оконча­ний:

- концевые аппараты, образующие межнейрональные синапсы и осуществляющие связь нейронов между собой;

- эффекторные окончания (эффек­торы), передающие нервный импульс на ткани рабочего органа;

- рецепторные (аффекторные, или чувствительные) окончания.

Синапсы обеспечивают передачу возбуждающих или тормозящих влияний между возбудимыми клетками. В возбуждающих синапсах осуществляется перенос нервного импульса от одной клетки другой, а в тормозных – полученный клеткой импульс препятствует ее возбуждению. Следовательно, главная функция синапса состоит в осуществлении модуляции нервного импульса. 

 

 

 

Рисунок 3 – Схема химического синапса

 

Передача сигналов от клетки к клетке может осуществляться либо путем прямого прохождения потенциалов действия (в электрических синапсах), либо с помощью специальных молекул – нейромедиаторов (в химических синапсах).

Эффекторные окончания (эффек­торы) бывают двух типов:

- двигательные,

- секреторные.

Двигательные нервные окончания - это концевые аппараты аксонов двигательных клеток соматической, или вегетативной, нервной системы. При их участии нервный импульс передается на ткани рабочих органов.  Двигательные окончания в поперечнополосатых мышцах называются нервно-мышечными окончаниями. Они представляют собой окончания аксонов клеток двигательных ядер передних роговспинного мозга или моторных ядер головного мозга.

Нервно-мышеч­ное окончание состоит из концевого ветвления осевого цилиндра нервного волокна и специализированного участка мышечного волокна. Миелиновое нервное волокно, подойдя к мышечному волокну, теряет миелиновый слой и погружается в него. Сходное строение имеют секреторные нервные окончания. Они представляют собой концевые утолщения терминалей или утолщения по ходу нервного волок­на, содержащие пресинаптические холинерги­ческие пузырьки.

Рецепторные нервные окончания рассеянны по всему организму, они воспринимают различные раздражения из внешней или внутренней среды. Сам рецептор представляет собой терминальное ветвление дендрита чувствительной (рецепторной) клетки.  Выделяют две большие группы рецеп­торов – экстерорецепторы и интерорецепторы.К экстерорецепторам (вне­шним) относятся слуховые, зрительные, обонятельные, вкусовые и осяза­тельные рецепторы. К интерорецепторам (внутренним) относятся висцеро-рецепторы (сигнализирующие о состоянии внутренних органов) и вестибуло-проприорецепторы (рецепторы опорно-двигательного аппарата).

 

Литература

1. Смирнов, В.М. Физиология сенсорных систем и высшая нервная деятель­ность / В.М. Смирнов, С.М. Будылина. – М.: Медицина, 2003. - 304 с.

2. Шульговский, В. В. Основы нейрофизиологии: Учебное пособие для студентов вузов. – М.: Аспект Пресс, 2000. – 277 с..

3. Батуев, А.С. Физиология поведения. Нейрофизиологические закономерно­сти / А.С. Батуев. - Л.: Наука, 1986. - 340 с.

4. Александров, Ю.И. Психофизиология / Ю.И.Александров. – М.: Медицина, 2001. – 230 с.

5. Данилова, Н.Н. Физиология высшей нервной деятельности / Н. Н. Данилова, А.Л. Крылова. – Ростов н/Д: Феникс, 1999. – 480 с.

 


Дата добавления: 2021-01-21; просмотров: 170; Мы поможем в написании вашей работы!

Поделиться с друзьями:




Мы поможем в написании ваших работ!